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TOPOLOGICAL ENTROPY OF EXPANSIVE FLOW ON

TVS-CONE METRIC SPACES

Kyung Bok Lee

Abstract. We shall study the following. Let φ be an expansive
flow on a compact TVS-cone metric space (X, d).

First, we give some equivalent ways of defining expansiveness.
Second, we show that expansiveness is conjugate invariance. Fi-
nally, we prove that lim sup 1

t
log v(t) ≤ h(φ), where v(t) denotes

the number of closed orbits of φ with a period τ ∈ [0, t] and h(φ)
denotes the topological entropy.

Remark that in 1972, R. Bowen and P. Walters had proved this
three statements for an expansive flow on a compact metric space
[1].

1. Introduction and Preliminaries

TVS-cone metric space is a generization of metric space. In this
paper, we shall define expansive flow on TVS-cone metric space and find
equivalent characterization of expansive flow. Also, we study conjugate
invariance and topological entropy of expansive flow. To do this, we first
introduce some definitions and results. [1],[2].

Let E be a topological vector space. A subset P of E is called a
topological vector space cone (abbr. TVS-cone) if the following are
satisfied

(1) P is closed and int(P ) 6= ∅
(2) If u, v ∈ P and a, b ≥ 0, then au+ bv ∈ P
(3) If u,−u ∈ P , then u = 0.
Let P be a TVS-cone of a topological vector space E. Some partial

orderings ≤, <, � on E with respect to P are defined as followings
respectively
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(1) u ≤ v if v − u ∈ P
(2) u < v if u ≤ v, u 6= v
(3) u� v or v � u if v − u ∈ IntP

Lemma 1.1. [2] Let P be a TVS-cone of a topological vector space
E. Then the following hold.

(1) If u� 0, then ru� 0 for all r > 0
(2) If u1 � v1, u2 � v2, then u1 + u2 � v1 + v2
(3) If u� 0, v � 0, then there exists w � 0 such that w � u, w � v

Let E be a topological space with cone P . A map d : X × X → E
is called a TVS-cone metric on X and (X, d) called a TVS-cone metric
space if the following are satisfied.

(a) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 iff x = y.
(b) d(x, y) = d(y, x) for all x, y ∈ X.
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
If d is a metric on the setX, then the collection of all ε-ballsBd(x, ε) =

{y ∈ X|d(x, y) � ε}, for all x ∈ X and ε � 0, is a basis for a topology
= on X. [2]

In this paper, we always suppose that a cone P is a TVS-cone of
a topological vector space E and a TVS-cone metric space (X, d) is a
topological space with the above topology =.

Let (X, d) be a TVS-cone metric space over topological vector space
E.

A flow on X is a continuous map φ : X × R→ X satisfying
(1) φ(x, 0) = x for all x ∈ X.
(2) φ(φ(x, s), t) = φ(x, s+ t) for all x ∈ X and s, t ∈ R.
For t ∈ R, let φt be a homeomorphism of X defined by φt(x) = φ(x, t)

for all x ∈ X.
Denoted by C0(R) the set of all continuous functions h : R→ R such

that h(0) = 0.
A flow φ on X is said to be expansive if for every ε > 0 there exists

u � 0 such that if x, y ∈ X satisfy d(φt(x), φh(t)(y)) � u for all t ∈ R
and some h ∈ C0(R) then y = φr(x) where |r| < ε.

2. Some equivalent definitions of expansive flows

Our first result shows that the study of expansive flows reduced to
those without fixed points.

Proposition 2.1. If a flow φ on X is expansive, then each fixed
point of φ is an isolated point on X.
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Proof. Suppose φt(x) = x for all t ∈ R. Let ε > 0 be given and let
u � 0 be the expansive vector. If d(x, y) � u, then choosing h(t) = 0
for all t ∈ R, and hence y = φr(x) = x, where |r| < ε. Therefore
B(x, u) = {x} and x is an isolated point of X.

By Proposition 2.1, if φ is an expansive flow on X, then X = F ∪X ′
where F is the set of fixed points of φ and φ|X′×R has no fixed points.
From now on we shall always assume has no fixed points.

Lemma 2.2. Let X be a compact TVS-cone metric space. If a flow
φ on X has no fixed points, then there exists T0 > 0 such that every T
with 0 < T < T0, there is a vector u � 0 with d(φT (x), x) > u for all
x ∈ X, where v > w ⇔ w − v 6∈ P .

Proof. If φ has no periodic points, let T0 = 1. If φ has some periodic
points, let A be the set of periods of periodic points. Then we claim
that inf A > 0.

Assume that inf A = 0. Then there exists a sequence (τn) in A
such that τn → 0. Let xn be the periodic point with period τn. By the
compactness of X, the sequence (xn) in X has a convergent subsequence.
Put xn → x. For any t ∈ R, we can write t = qnτn + rn for some qn ∈ Z
and 0 ≤ rn < τn. Therefore we get that τn → 0 and so φt(xn) =
φqnτn+rn(xn) = φrn(φqnτn(xn)) = φrn(xn)→ φ0(x) = x. Since φt(xn)→
φt(x), we have φt(x) = x, contradicting the fact that φ has no fixed
points. Take T0 = inf A. Let u� 0. Assume that it is false. Then there
exists 0 < t < T0 such that for each positive integer n, we can choose
xn ∈ X satisfying d(φt(xn), xn) ≤ 1

nu. By the compactness of X, the
sequence (xn) in X has a convergent subsequence. Let xn → x. Then
d(φt(x), x) = 0 and conclude that φt(x) = x, contradicting the choice of
T0.

Lemma 2.3. Let T0 be the number determined by Lemma 2.2. For
every T ∈ (0, T02 ), there exists vector uT � 0 such that if x, y ∈ X
satisfy d(φt(x), φh(t)(y)) � u for all t ∈ R and some h ∈ C0(R), then
h(T ) ≥ 0.

Proof. Arguing by contradiction, assume that there is T ∈ (0, T02 )
such that for each vector u� 0 there exist xu, yu ∈ X and hu ∈ C0(R)
such that d(φt(xu), φhu(t)(yu))� u for all t ∈ R but hu(T ) < 0. Fix u�
0. For each positive integer n, there exist xn, yn ∈ X and hn ∈ C0(R)
such that d(φt(xn), φhn(t)(yn))� 1

nu for all t ∈ R, but hn(T ) < 0.
We may assume that xn → x and yn → y. Since d(xn, yn) =

d(φ0(xn), φhn(0)(yn))� 1
nu for all n, letting n→∞, we get x = y.
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Case 1. If hn(T ) ≥ −T , since [−T, 0] is compact, we can suppose
hn(T ) → −L for some 0 ≤ L ≤ T . Since d(φT (xn), φhn(T )(yn)) �
1
nu, letting n → ∞, we get φT (x) = φ−L(x). Thus φT+L(x) = x,
contradicting the fact that T0 is the smallest period of φ.

Case 2. If hn(T ) < −T , then there exists tn ∈ (0, T ) such that
hn(tn) = T by intermediate value theorem. Since [0, T ] is compact, we
can suppose tn → t ∈ [0, T ]. Since d(φtn(xn), φhn(tn)(yn)) = d(φtn(xn), φ−T (yn))�
1
nu, letting n→∞, we get φt(x) = φ−T (x). Thus φT+t(x) = x, contra-
dicting the fact that T0 is the smallest period of φ.

Lemma 2.4. Let T0 be the number determined by Lemma 2.2, For
every T ∈ (0, T22 ), there exist a vector uT � 0 and a number τT > 0
such that if d(φt(x), φh(t)(y)) � uT for all t ∈ R and some h ∈ C0(R)
then h(t+ T )− h(t) ≥ τT for all t ∈ R.

Proof. Take a vector u� 0 determined by Lemma2.2. Let uT = 1
3u.

Since φ : X × [0, 1] → X is uniformly continuous, there exist vector
v � 0 and number 0 < τ < 1 such that if d(p, q) � v and s, t ∈ [0, 1]
with |s− t| ≤ τ , then d(φs(p), φt(q)) � u. Let s, t ∈ R with |s− t| ≤ τ
and x ∈ X.

Case 1. If s ≥ t, since 0 ≤ s− t ≤ τ < 1 and d(φt(x), φt(x)) = 0� v,
we obtain d(φs−t(φt(x)), φ0(φt(x))) = d(φs(x), φt(x))� u.

Case 2. If s < t, since 0 < t−s ≤ τ < 1 and d(φs(x), φs(x)) = 0� v,
we obtain d(φ0(φs(x)), φt−s(φs(x))) = d(φs(x), φt(x))� u.

Thus there is a number τ > 0 such that if s, t ∈ R with |s − t| ≤ τ
then d(φs(x), φt(x)) � u for all x ∈ X. Let h ∈ C0(R), x, y ∈ X and
d(φt(x), φh(t)(y))� uT for all t ∈ R.

We claim that d(φh(t)(y), φh(t+T )(y)) ≥ uT . d(φh(t)(y), φh(t+T )(y)) ≥
uT where v ≥ w ⇔ w−v 6∈ IntP . To see this, if not, since d(φt(x), φh(t)(y))�
uT and d(φt+T (x), φh(t+T )(y))� uT , we get d(φt(x), φt+T (x))� 3uT =
u contradiction the choice of u. This proves the claim. Then, by the
continuity of φ, there exists τT > 0 such that |h(t+ T )− h(t)| ≥ τT for
all t ∈ R.

Now we shall prove h(t + T ) − h(t) ≥ τT for all t ∈ R. Putting
J = {t ∈ R|h(t + t) − h(t) ≥ τT }. By Lemma 2.3, h(T ) = |h(T )| ≥ τT
and so 0 ∈ J . If t ∈ J , then (t − s, t + s) ⊂ J for some s > 0 by
h(t + T ) ≥ h(t) + τT . If t ∈ Jc, then (t − s, t + s) ⊂ Jc for some s > 0
by h(t) ≥ h(t+ T ) + τT . Thus J is open and also closed set. So J = R.
Therefore we obtain that h(t+ T )− h(t) ≥ τT for all t ∈ R.

Let (X, d) be a TVS-cone metric space over topological vector space
E and define ρ : (X × X)2 → E by ρ((x1, y1), (x2, y2)) = d(x1, x2) +
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d(y1, y2). Then ρ is a metric on X ×X. Since Bd(x,
1
2u)×Bd(y, 12u) ⊂

Bρ((x, y), u) and Bρ((x, y), u) ⊂ Bd(x, u)×Bd(y, u), the product topol-
ogy on X ×X is the metric topology induced by ρ.

The following theorem contains several characterizations of a expan-
sive flow.

Theorem 2.5. Let (X, d) be a compact TVS-cone metric space and
φ be a flow on (X, d) without fixed points. Then the following are
equivalent.

(1) φ is expansive flow.

(2) For every ε > 0 there exists u � 0 such that if x, y ∈ X satisfy
d(φt(x), φh(t)(y))� u for all t ∈ R and some increasing homeomorphism
h : R→ R with h(0) = 0, then y = φt(x) for |t| < ε.

(3) For any u � 0 there is v � 0 such that if x, y ∈ X satisfy
d(φt(x), φh(t)(y)) � v for all t ∈ R and some h ∈ C0(R), then y is on
the same orbit as x and the orbit from x to y lies inside B(x, u).

(4) For any ε > 0 there exist u � 0 and τ > 0 such that if t =
{ti}, s = {si} are bisequences in R with t0 = s0 = 0, 0 < ti+1 − ti ≤ τ ,
|si+1 − si| ≤ τ , ti →∞ and t−i → −∞ as i→∞ and if x, y ∈ X satisfy
d(φti(x), φsi(y))� u for all i ∈ Z, then y = φt(x) for |t| < ε.

Proof. We first shall show that (1), (2), and (4) are equivalent.

To show that (2) =⇒ (1), let T0 be the number determined by Lemma
2.2 and ε > 0 be given. Let u � 0 be the corresponding vector given
by (2). We can choose T ∈ (0, T02 ) satisfying that if 0 ≤ t ≤ T , then

d(x, φt(x)) � 1
2u for all x ∈ X. Indeed, there exist vector v � 0

and number T ∈ (0, T02 ) such that if s, t ∈ [0, T0], |s − t| ≤ T and

d(p, q) � u, then d(φs(p), φt(q)) � 1
2u by the uniform continuity of

φ : X × [0, T0] → X. Since d(x, x) = 0 � v, we have d(x, φt(x)) � 1
2u.

By Lemma 2.4, there are vectors uT � 0 and number τT > 0 such that
for any h ∈ C0(R) if x, y ∈ X satisfy d(φt(x), φh(t)(y)) � uT for all
t ∈ R, then h(t+ T )− h(t) ≥ τT for all t ∈ R. We choose vector v � 0
such that v � 1

2u and v � uT . Suppose d(φt(x), φh(t)(y))� v � uT for
all t ∈ R and some h ∈ C0(R). Then h(t+ T )− h(t) ≥ τT for all t ∈ R.
Define hT : R→ R by hT (nT ) = h(nT ), n ∈ Z and by linearity on each
interval [nT, (n+ 1)T ]. Then hT is an increasing homeomorphism with
hT (0) = 0. If t ∈ [nT, (n+ 1)T ], there exists s ∈ [nt, (n+ 1)T ] such that
hT (t) = h(s). Then d(φs(x), φhT (t)(y)) = d(φs(x), φh(s)(y)) � v � 1

2u.

Since d(φt(x), φs(x)) � 1
2u, we get d(φt(x), φhr(t)(y)) � u. By (2)

y = φt(x) for some |t| < ε and hence φ is expansive.
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To show that (1) =⇒ (4), given ε > 0 and let u � 0 be the corre-
sponding expansive vector given by (1). Take number τ > 0 such that
if |t − s| < τ then d(φt(x), φs(x)) � 1

3u for all x ∈ X. Let {ti}∞i=−∞,
{si}∞i=−∞ and x, y ∈ X satisfy the hypotheses of (4). Define h : R→ R
by h(ti) = si and by extending linearly on each inteval [tt, ti+1]. Since
h(0) = h(t0) = s0 = 0, we have h ∈ C0(R). For any t ∈ R, there exists i
such that ti ≤ t < ti+1. Since d(φt(x), φti(x)) � 1

3u, d(φt(x), φsi(y)) �
1
3u and d(φsi(y), φh(t)(y)) � 1

3u, we get d(φt(x), φh(t)(y)) � u for all
t ∈ R. By expansiveness of φ, y = φt(x) for some |t| < ε.

To prove that (4) =⇒ (2), let ε > 0 be given and let u� 0 and τ > 0
be chosen as in (4). Suppose d(φt(x), φh(t)(y)) � u for all t ∈ R and
some increasing homeomorphism h : R → R with h(0) = 0. Put t0 = 0
and for i ∈ N define

ti+1 =

{
h−1(h(ti) + τ), if h−1(h(ti) + τ) ≤ ti + τ

ti + τ, if h−1(h(ti) + τ) > ti + τ
and

t−i−1 =

{
h−1(h(t−i)− τ), if h−1(h(t−i)− τ) ≥ t−i − τ
t−i − τ, if h−1(h(t−i)− τ) < t−i − τ

.

Put si = h(ti). Then 0 < si+1 − ti ≤ τ and 0 < si+1 − si ≤ τ for all
i ∈ Z. Moreover, ti → ∞ and t−i → −∞ as i → ∞. Apply to (4), we
obtain y = φt(x) for some |t| < ε.

To show that (1) =⇒ (3), for u � 0, there exists an ε > 0 such
that φt(x) ∈ B(x, u) for all |t| < ε. By (1), there is v � 0 such that if
d(φt(x), φh(t)(y))� v for all t ∈ R and some h ∈ C0(R), then y = φt(x)
for some |t| < ε. Therefore y is on the same orbit as x and the orbit
from x to y lies inside B(x, u).

Finally, to show that (3) =⇒ (1), let ε > 0 be given. Since
⋃
x∈X{(x, φt(x))|−

ε < t < ε} is a neighborhood of 4X and 4X is compact, there is u� 0
such that Bρ(4X , u) ⊂

⋃
x∈X{(x, φt(x))| − ε < t < ε}. By (3), we

can choose v � 0 such that if d(φt(x), φh(t)(y)) � v for all t ∈ R and
some h ∈ C0(R), then y is on the same orbit as x and the orbit from
x to y lies inside Bd(x, u). Since ρ((x, x), (x, y)) = d(x, y) � u, we get
(x, y) ∈ Bρ(4X , u) ⊂

⋃
x∈X{(x, φt(x))| − ε < t < ε}. Therefore, we

conclude that y = φt(x) for some |t| < ε.

3. Conjugate invariance

Let (X, d) and (Y, ρ) be compact TVS-cone metric spaces over topo-
logical vector space E. We recall that the flows φ on X and ψ on Y are
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said to be conjugate if there is a homeomorphism from X to Y map-
ping the orbits of φ onto the orbits of ψ. In other words, there are a
homeomorphism f : X → Y and a continuous function h : X × R → R
satisfying f(φt(x)) = ψh(x,t)(f(x)) for all (x, t) ∈ X × R.

Theorem 3.1. Expansiveness is conjugate invariance.

Proof. Suppose that f : X → Y is a homeomorphism which maps
the orbits of φ onto the orbits of ψ. Then f−1 ◦ ψt ◦ f is a flow on X
with the same orbits as φt. Fix x ∈ X.

Case 1. If the orbit of x is not periodic under φ, then the map
σx : R → R given by (f−1 ◦ ψt ◦ f)(x) = φσx(t)(x) is a well-defined
bijection. Also σx(0) = 0 and σx is either strictly increasing or strictly
decreasing. Hence σx is a homeomorphism of R.

Case 2. Let x be a periodic point of φ and let τ > 0 be the period of
x under φ and κ > 0 be the period of f(x) under ψ. Then σx is well-
defined on [0, κ] given by (f−1 ◦ ψt ◦ f)(x) = φσt(x)(x) and takes values
either in [0, τ ] or [−τ, 0]. Moreover σx is easily shown to be continuous
on [0, κ]. Similarly σx can be defined on [nκ, (n+1)κ] and so σx becomes
a homeomorphism of R.

Suppose φ is expansive and let u2 � 0 be given. Since f is uniformly
continuous, we can choose u1 � 0 so that f(Bd(x, u1)) ⊂ Bρ(f(x), u2)
for all x ∈ X. Let v1 � 0 be the vector given by (3) in Theorem 2.5
to correspond to u1 and choose v2 � 0 so that ρ(y1, y2) � v2 implies
d(f−1(y1), f

−1(y2)) � v1. If ρ(ψt(f(x1)), ψh(t)(f(x2))) � v2 for all t ∈
R and some h ∈ C0(R), then d((f−1 ◦ψt ◦f)(x1), (f

−1 ◦ψh(t) ◦f)(x2)) =
d(φσx1(t)(x1), φσx2(t)(x2)

) � v1 for all t ∈ R. Putting σx1(t) = s. Then

t = σ−1x1 (s) and it follows that d(φs(x1), φσx2◦h◦σ
−1
x1

(s)(x2)) � v1 for all

s ∈ R. Since σx2 ◦ h ◦ σ−1x1 ∈ C0(R), x2 is in the same φ-orbit as x1 and
the φ-orbit from x1 to x2 belongs to Bd(x1, u1). Therefore f(x2) is in
the same ψ-orbit as f(x1) and the ψ-orbit from f(x1) to f(x2) belongs
to B(f(x1), u2). By Lemma 2.5.(3), ψ is expansive.

4. Topological entropy of expansive flows

We shall define topological entropy of homeomorphism of TVS-cone
metric spaces. Let (X, d) be a TVS-cone metric space and f be a home-
omorphism of X. Let n ∈ N and u � 0 be a vector. For E,F ⊂ X,
we say that E (n, u)-spans F with respect to f if for each x ∈ F there
is y ∈ E such that d(fk(x), fk(y)) � u for all 0 ≤ k < n. We let



266 Kyung Bok Lee

γn(F, u, f) denote the minimum cardinality of a set which (n, u)-spans
F with respect to f . If F is compact, then the continuity of f guarantess
γn(F, f) <∞. For a compact subset F ⊂ X we define

γf (F, u) = lim sup 1
n log γn(F, u, f) and h(f, F ) = sup γf (F, u).

For u� 0 and x ∈ X define Γu(x, f) = {y ∈ X|d(fn(x), fn(y))� u
for all n ∈ Z}. f is called h-expansive if there exists u � 0 such that
h(f,Γu(x, f)) = 0 for all x ∈ X. A flow φ on X is called h-expansive if
a homeomorphism φt : X → X is h-expansive for all t > 0.

We shall prove the following

Theorem 4.1. Let (X, d) be a compact TVS-cone metric space. Ev-
ery expansive flow φ on X is h-expansive.

Proof. Let t > 0. For u� 0, we define Γu(x, φ) = {y ∈ X|d(φs(x), φs(y))�
u for all s ∈ R}. For any τ > 0, since φ is expansive, there is u � 0
such that Γu(x, φ) ⊂ φ[−τ,τ ](x). By the integral continuity theorem,
there exists v � 0 such that if d(x, y) � v then d(φs(x), φs(y)) �
u for all 0 ≤ s ≤ t. Let y ∈ Γv(x, φt). Then d(φnt(x), φnt(y)) =
d(φnt (x), φnt (y)) � v for all n ∈ Z. For any s ∈ R, there is n ∈ Z such
that nt ≤ s < (n+1)t. Since d(φnt(x), φnt(y))� v and 0 ≤ s−nt < t, we
get d(φs−nt(φnt(x)), φs−nt(φnt(y))) = d(φs(x), φs(y)) � u. Therefore,
Γv(x, φt) ⊂ Γu(x, φ) ⊂ φ[−τ,τ ](x). Since φ : X × [0, 1] → X uniformly
continuous, there exist w � 0 and c ∈ (0, 1) such that if d(p, q) � w
and a, b ∈ [0, 1] with |a − b| < c, then d(φa(p), φb(q)) � v. We claim
that if a, b ∈ R and |a− b| < c, then d(φa(x), φb(x))� v for all x ∈ X.

(1) When a < b, since d(φa(x), φa(x)) = 0 � w and 0 ≤ b − a < c,
we have d(φa(x), φb−a(φa(x))) = d(φa(x), φb(x))� v.

(2) When a ≥ b, since d(φb(x), φb(x)) = 0� w and 0 ≤ a− b < c, we
have d(φa−b(φb(x)), φb(x)) = d(φa(x), φb(x))� v.

Since {(s − c, s + c)|s ∈ [−τ, τ ]} is an open cover of [−τ, τ ] and
[−τ, τ ] is compact, there exist finitely many s1, s2, · · · , sm in [−τ, τ ]
such that [−τ, τ ] ⊂ ∪mi=1(si − c, si + c). Let n ∈ N. We assert that
{φsi(x)|i = 1, 2, · · · ,m} (n, v)-spans φ[−τ,τ ](x) with respect to φt. For
any s ∈ [−τ, τ ], there is i such that s ∈ (si − c, si + c). For 0 ≤ k < n,
since |kt+s−(kt+si)| = |s−si| < c, we obtain d(φkt (φs(x)), φkt (φsi(x))) =
d(φkt+s(x), φkt+si(x)) � v. Thus, {φsi(x)|i = 1, 2, · · · ,m} (n, v)-spans
φ[−τ,τ ](x) with respect to φt. Therefore, γn(φ[−τ,τ ](x), v, φ) ≤ m for all
n ∈ N. Then γφt(φ[−τ,τ ](x), v) = 0. We conclude that h(φt,Γv(x, φt)) ≤
h(φt, φ[−τ,τ ](x)) = 0. Thus φ is h-expansive.

We shall now discuss topological entropy of an expansive flow φ on
a TVS-cone metric space. Let t > 0 and u � 0. For E, F ⊂ X we say
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that E (t, u)-spans F with respect to φ if for each x ∈ F there is y ∈ E
such that d(φs(x), φs(y))� u for all 0 ≤ s ≤ t.

Let γt(F, u, φ) denote the minimum cardinality of a set which (t, u)-
spans F with respect to φ. We claim that if F is compact, then γt(F, u, φ) <
∞. There exists v � 1

2u. Let x ∈ F . By the integral continuity the-
orem, there exists a neighborhood Ux of x such that if y ∈ Ux, then
d(φs(x), φs(y))� u for all 0 ≤ s ≤ t. Since {Ux|x ∈ F} is an open cover
of F and F is compact, there exists finitely many x1, x2, · · · , xn ∈ F
such that F ⊂ ∪ni=1Uxi . For any x ∈ F , there is i such that x ∈ Uxi .
Then

d(φs(x), φs(xi))� u for all 0 ≤ s ≤ t.
Thus {x1, x2, · · · , xn} (t, u)-spans F with respet to φ and so rt(F, u, φ) ≤

n. We define rφ(F, u) = lim sup 1
t log rt(F, u, φ).

Let F ⊂ X. We say that E ⊂ F is a (t, u)-separated subset of F with
respect to φ if for any x, y ∈ E with x 6= y we have d(φs(x), φs(y)) ≥ u
for some 0 ≤ s ≤ t. Let St(F, u, φ) denote the maximum cardinality
of a set which is a (t, u)-separated subset of F . We claim that if F is
compact, then St(F, u, φ) < ∞. There exists v � 1

2u. For any x ∈ X,
by integral continuity theorem, there exists a neighborhood Ux of x such
that if u ∈ Ux then d(φs(x), φs(y)) � v for all 0 ≤ s ≤ t. Since{Ux|x ∈
F} is an open cover of F and F is compact, there exist finitely many
x1, x2, · · · , xn ∈ F such that F ⊂

⋃n
i=1 Uxi . If E ⊂ F with CardE ≥ n+

1, then there exist x, y ∈ E and i such that x, y ∈ Uxi . Then we obtain
d(φs(x), φs(y)) ≤ d(φs(x), φs(xi)) + d(φs(xi), φs(y)) � 2v � u for all
0 ≤ s ≤ t. Thus E is not (t, u)-separated set. Therefore, St(F, u, φ) ≤ n.
We define Sφ(F, u) = lim sup 1

t logSt(F, u) and topological entropy by

h(φ, F ) = supSφ(F, u) = sup γφ(F, u). These limits exist and are equal
by following proposition.

Proposition 4.2. (1) γt(F, u, φ) ≤ St(F, u, φ) ≤ γt(F, v, φ), where
v � 1

2u.

(2) If u � v, then we have γφ(F, v) ≤ γφ(F, u) and Sφ(F, v) ≤
Sφ(F, u).

Proof. (1) Let E be a maximal (t, u)-separated subset of F . For any
x ∈ F−E, since E∪{x} is not a (t, u)-separated subset of F , there exists
y ∈ E such that d(φs(x), φs(y)) � u for all 0 ≤ s ≤ t. Thus E (t, u)-
spans F . Hence γt(F, u, φ) ≤ St(F, u, φ). Let E1 be a (t, u)-separated
subset of F and let E2(t, v)-spans F . For any x ∈ E1 ⊂ F , there
exists f(x) ∈ E2 such that d(φs(x), φs(f(x))) � v for all 0 ≤ s ≤ t.
If f(x) = f(y), then we have d(φs(x), φs(y)) ≤ d(φs(x), φs(f(x))) +
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d(φs(f(x)), φs(y)) � u for all 0 ≤ s ≤ t. Since E1 is (t, u)-separated,
we have x = y and so f is injective. Thus, we conclude that CardE1 ≤
CardE2. Therefore, St(F, u, φ) ≤ γt(F, v, φ).

(2) The proof is trivial.

For t > 0, let v(t) denote the number of closed orbits of φ with a
period τ ∈ [0, t] and vc(t) be the number of closed orbits of φ with a
period τ ∈ [t− c, t+ c].

Theorem 4.3. Let φ be an expansive flow on a compact TVS-cone
metric spaceX. Then the topological entropy h(φ) satisfies lim sup 1

t log v(t) ≤
h(φ) ≡ h(φ,X).

Proof. Let ε > 0. By Theorem 2.5 (4), there exist u � 0 and τ > 0
such that if (ti), (ui) are bi-sequences with t0 = u0 = 0, 0 < ti+1 − ti ≤
2τ , |ui+1 − ui| ≤ 2τ for all i ∈ Z, ti →∞ and t−i → −∞ as i→∞ and
if d(φti(x), φut(y)) � u for all i ∈ Z, then y = φs(x) for some |s| < ε.
Let x, y ∈ X be distinct periodic points with periods a, b ∈ [t− τ

2 , t+ τ
2 ]

respectively. Let m = [
t− τ

2
τ ]+1 and put tpm+q = pa+qτ , upm+q = pb+qτ

for (p, q) ∈ Z× {0, 1, · · · ,m− 1}. Then t0 = u0 = 0, tpm+q+1 − tpm+q =
upm+q+1 − upm+q = τ for (p, q) ∈ Z × {0, 1, 2, · · · ,m − 2} and 0 <
t(p+1)m − tpm+m−1 ≤ 2τ , 0 < u(p+1)m − upm+m−1 ≤ 2τ , ti → ∞ and
t−i → −∞ as i → ∞. Suppose that x, y are not (t, u)-separated. Then
d(φs(x), φs(y)) � u for all 0 ≤ s ≤ t. Since d(φtpm+q(x), φupm+q(y)) =
d(φqr(φpa(x)), φqr(φpb(y))) = d(φqr(x), φqr(y)) and 0 ≤ qr ≤ (m−1)τ <
t, we have d(φti(x), φui(y)) � u for all i ∈ Z. Thus y = φs(x) for
some |s| < ε and so we have a contradiction. Hence x and y are (t, u)-
separated. Hence v τ

2
(t) ≤ γt(φ, u). Let t1 < t2. If E is (t1, u)-separated,

then E is (t2, u)-separated. Therefore, γt1(φ, u) ≤ γt2(φ, u), i.e., γt(φ, u)
increases with t. On the other hand, let t = mτ + s where m = [ tτ ],

0 ≤ s < τ . From [ tτ ] = m, it follows that m ≤ t
τ < m+ 1. We consider

two cases.

Case 1. s ≤ τ
2 . By (0, t] ⊂ [0, τ ] ∪

⋃m
n=1[nτ −

τ
2 , nτ + τ

2 ], we get

v(t) ≤ v τ
2
( τ2 ) +

∑m
n=1 v τ2 (nτ) ≤ (m+ 1)γt(φ, u) ≤ ( tτ + 2)γt(φ, u).

Case 2. τ
2 < s < τ . From (0, t] ⊂ [0, τ ] ∪

⋃m
n=1[nτ −

τ
2 , nτ +

τ
2 ] ∪ [mτ, (m+ 1)τ ], we obtain v(t) ≤ v τ

2
( τ2 ) +

∑m
n=1 v τ2 (nτ) + v τ

2
((m+

1
2)τ) ≤ (m + 2)γt(φ, u) ≤ ( tτ + 2)γt(φ, u). Hence 1

t log v(t) ≤ 1
t log( tτ +

2) + 1
t log γt(φ, u). Since limt→∞

1
t log( tτ + 2) = 0, lim sup 1

t log v(t) ≤
lim sup 1

t log γt(φ, u) = h(φ, u) ≤ h(φ). This completes the proof.
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